Главная/Вискозиметрия

Вискозиметрия

Вискозиметрия, раздел физики, посвященный изучению методов измерения вязкости. Существующее разнообразие методов и конструкций приборов для измерения вязкости — вискозиметров — обусловлено как широким диапазоном значений вязкости (от 10-5 н•сек/м2 у газов до 1012 н •сек/м2 у ряда полимеров), так и необходимостью измерять вязкость в условиях низких или высоких температур и давлений (например, сжиженных газов, расплавленных металлов, водяного пара при высоких давлениях и т.д.).

Наиболее распространены три метода измерения вязкости газов и жидкостей: капиллярный, падающего шара и соосных цилиндров (ротационный). В основе их лежат соответственно: закон Пуазейля, закон Стокса и закон течения жидкости между соосными цилиндрами. Вязкость определяют также по затуханию периодических колебаний пластины, помещенной в исследуемую среду.

Особую группу образуют методы измерения вязкости в малых объёмах среды (микровязкость). Они основаны на наблюдении броуновского движения, подвижности ионов, диффузии частиц.

Ротационный метод вискозиметрии

Ротационный метод вискозиметрии заключается в том, что исследуемая жидкость помещается в малый зазор между двумя телами, необходимый для сдвига исследуемой среды. Одно из тел на протяжении всего опыта остаётся неподвижным, другое, называемое ротором ротационного вискозиметра, совершает вращение с постоянной скоростью. Очевидно, что вращательное движение ротора визкозиметра передается к другой поверхности (посредством движения вязкой среды; отсутствие проскальзывания среды у поверхностей тела предполагается, таким образом рассматриваются). Отсюда следует тезис: момент вращения ротора ротационного вискозиметра является мерой вязкости.

Для простоты мы рассмотрим инверсную модель ротационного вискозиметра: вращаться будет внешнее тело, внутренее тело останется неподвижным, ему и будет сообщаться момент вращения. Однако для краткости изложения будем называть внутреннее тело ротором ротационного вискозиметра.

Введём необходимые обозначения:
R1,L - радиус и длина ротора ротационного вискозиметра;
ω - постоянная угловая скорость вращения внешнего тела;
R2 - радиус вращающегося резервуара ротационного вискозиметра;
η - вязкость исследуемой cреды;
M1 - момент вращения, передаваемый через вязкую жидкость, равный


d,l - диаметр и длина упругой нити,
φ - угол, на который закручивается неподвижно закреплённая нить,
G - момент упругости материала нити

При этом крутящий момент M1 ротора ротационного вискозиметра уравновешивается моментом сил упругости нити М2:

Заметим вновь, что М1 = М2, откуда после нескольких преобразований относительно φ имеем:


или

где k – постоянная ротационного вискозиметра.

Если рассматривать ту же задачу для ротационного вискозиметра с вращающимся внутренним (ротором висозиметра) и неподвижным внешним телами, имеем:

или

В этом случае G – момент, необходимый для поддержания постоянной частоты вращения, (один оборот ротора вискозиметра за τ с).

Заметим, что полученные отношения справедливы для цилиндра бесконечной длины, в реальных условиях учитывается поправка на размеры тел ротационного вискозиметра. Для этого производится вычисление так называемой эффективной высоты H ротационного вискозиметра:

  1. проводится измерение момента для жидкостей с различным значением вязкости (η1 и η2) при двух различных высотах внутреннего цилиндра (L1 и L2);
  2. экстраполяцией прямых М1 = f(L) и М2 = f(L) к нулевому значению М1 и М2 получают величину ∆L;
  3. H=L+∆L
Эффективную высоту ротационного вискозиметра H подставляют в уравнения.

Ультразвуковой метод вискозиметрии

Сущность метода ультразвуковой вискозиметрии заключается в том, что в исследуемую среду погружают пластинку из магнито-стрикционного материала, называемую зондом вискозиметра на которую намотана катушка, в которой возникают короткие импульсы тока длительностью порядка 20±10 мксек, приводящие к возникновению колебаний. В соответствии с законом сохранения, при колебаниях пластинки в катушке наводится ЭДС, которая убывает со скорростью, зависящей от вязкости среды. Затем, при падении ЭДС до определённого порогового значения, в катушку поступает новый импульс. Вискозиметр определяет вязкость среды по частоте следования импульсов.

Вискозиметры, действие которых основано на ультразвуковом методе вискозиметрии, нельзя отнести к классу вискозиметров с широким диапазоном измерений. К классу высокотемпературных вискозиметров их также нельзя отнести в силу величины относительной погрешности, возникающей при высокотемпературной вискозиметрии и свойств материалов прибора.

Капиллярный метод вискозиметрии

Метод капиллярной вискозиметрии опирается на закон Пуазейля о вязкой жидкости, описывающий закономерности движения жидкости в капилляре.

Приведем уравнение гидродинамики для стационарного течения жидкости, с вязкостью η через капилляр вискозиметра:


Q – количество жидкости, протекающей через капилляр капиллярного вискозиметра в единицу времени, м3/с,
R – радиус капилляра вискозиметра, м
L – длина капилляра капиллярного вискозиметра, м
η – вязкость жидкости, Па•с,
р - разность давлений на концах капилляра вискозиметра, Па.

Отметим, что формула Пуазейля справедлива только для ламинарного потока жидкости, то есть при отсутствии скольжения на границе жидкость – стенка капилляра вискозиметра. Приведенное уравнение используют для определения динамической вязкости. Ниже размещено схематическое изображение капиллярного вискозиметра.

В капиллярном вискозиметре жидкость из одного сосуда под влиянием разности давлений р истекает через капилляр сечения 2R и длины L в другой сосуд. Из рисунка видно, что сосуды имеют во много раз большее поперечное сечение, чем капилляр вискозиметра, и соответственно этому скорость движения жидкости в обоих сосудах в N раз меньше, чем в капилляре вискозиметра. Таким образом не все давление пойдет на преодоление вязкого сопротивления жидкости, очевидно, что часть его будет расходоваться на сообщение жидкости нопределённой кинетической энергии. Следовательно, в уравнение Пуазейля необходимо ввести некоторую поправку на кинетическую энергию, называемую поправкой Хагенбаха:


где h – коэффициент, стремящийся к единице, d –плотность иссдледуемой жидкости.

Вторую поправку условно назовём поправкой влияния начального участка капилляра вискозиметра на характер движения исследуемой жидкости. Она будет характеризовать возможное возникновение винтового движения и завихрения в месте сопряжения капилляра с резервуаром капиллярного вискозиметра (откуда вытекает жидкость). Суть поправки состоит в том, что вместо истинной длины капилляра вискозиметра L мы вводим кажущуюся длину L':


n – определяется экспериментально на основе изменений при разных значениях L и примерно равен единице.

Следует учитывать, что при измерении вязкости органических жидкостей с большой кинематической вязкостью поправка Хагенбаха незначительна и составляет доли процента. Если же говорить о высококтемпературных вискозиметрах, то вследствие малой кинематической вязкости жидких металлов поправка может достигать 15%.

Метод капиллярной вискозиметрии вполне можно отнести к высокоточному методу вискозиметрии в силу того, что относительная погрешность измерений составляет доли процента, в зависимости от подбора материалов вискозиметра и точности отсчёта времени, а также иных параметров, участвующих в методе капиллярного истечения.

Метод падающего шарика

Метод падающего шарика вискозиметрии основан на законе Стокса, согласно которому скорость свободного падения твердого шарика в вязкой неограниченной среде можно описать следующим уравнением:


где V – скорость поступательного равномерного движения шарика вискозиметра; r – радиус шарика; g – ускорение свободного падения; d – плотность материала шарика; ро - плотность жидкости.

Необходимо отметить, что уравнение справедливо только в том случае, если скорость падения шарика вискозиметра довольно мала и при этом соблюдается некое эмпирическое соотношение:

Как и в капиллярном методе вискозиметрии, необходимо учитывать возникающие поправки на конечные размеры цилиндрического сосуда вискозиметра с падающим шариком (высотой L и радиусом R, при условии, если выполняется ). Такие действия приводят к уравнению для определения динамической вязкости жидкости методом падающего шарика вискозиметрии:

На основе метода создано множество моделей высокотемпературных вискозиметров, в которых измеряется вязкость расплавленных стекол и солей.

Вибрационный метод вискозиметрии

Вибрационный метод вискозиметрии базируется на определении изменений параметров вынужденных колебаний тела правильной геометрической формы, называемого зондом вибрационного вискозиметра,при погружении его в исследуемую среду. Вязкость исследуемой среды определяется по значениям этих параметров, при этом обычно используется градуировочная кривая вискозиметра (для случая примитивного вибрационного вискозиметра; в целом, не теряя общности, этот принцип переносится и на более сложные приборы).

Введём несколько обозначений: ω – частота колебаний, τ – время колебания тонкого упруго закрепленного зонда вибрационного вискозиметра, S - площадь пластины зонда вискозиметра; колебания происходят под действием гармонической силы. Вязкость и плотность исследуемой среды соответственно обозначим η и d.

Частотно-фазовый вариант вибрационного метода вискозиметрии используется для сильно-вязких жидкостей. В этом случае измеряется частота колебаний зонда вискозиметра, сначала не погруженного (ω0) и затем погруженного (ω) в жидкость при сдвиге фаз .

Для измерения вязкости менее вязких сред, например, металлических расплавов наиболее подходящим является амплитудно-резонансный вариант вибрационного метода вискозиметрии. В этом случае добиваются того, чтобы амплитуда А колебаний была максимальной (путём подбора частот колебаний). Поэтому измеряемым параметром, по которому определяется вязкость становится амплитуда колебаний зонда вискозиметра. В общем случае для малых значений вязкости имеем:

Учтем поправки С2(сторонние силы: трения, поверхностного натяжения, лобового сопротивления и т.п.). Имеем конечную формулу метода вибрационной вискозиметрии:

Градуировка вискозиметра производится по известным жидкостям (именно определяются постоянные С1,С2).

 

< Метод лазерной вспышки
 
119991, г.Москва, Ленинский проспект, д.31, тел./факс: +7(495) 926-38-48, spectro-systems@mail.ru